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Lattice Boltzman Method for turbulent combustion

Sharath S. Girimaji, Texas A & M University
Li-Shi Luo, ICASE, NASA Langley Research Center

1 Introduction

Over the last few years, the Lattice Boltzman methods - Lattice Boltzman Equation (LBE) and
Lattice Gas Automata (LGA) - have made significant strides in both theory and application On
the theoretical front, rigorous mathematical proof now exists demonstrating that the LBE method
is a special finite difference scheme of the Boltzmann equation that governs all fluid flow [1]. (Recall
that the Navier-Stokes equation also has its basis in the Boltzmann equation.) It has also been
shown that the LBE method can be related to some conventional CFD methods and the proof brings
to light the advantages of the LBE method. Detailed numerical studies with the LBE method have
demonstrated the physical accuracy and computational tractability for solving complex fluid flow
problems. In its current state, the LBE method is fully developed and well-tested for moderate-
Reynolds number, isothermal flows. Many complex flow phenomena have already been studied
with this approach (see recent reviews [2, 3] and references therein). The LBE method is now an
accurate engineering tool for simulating inert turbulence and is at an ideal stage for extension to
chemically reacting turbulent flows.

We propose the development of a new methodology for calculating turbulent combustion based
on the Boltzman equation rather than Navier-Stokes equation. Our ultimate objective is to per-
form large eddy simulations of the Lattice Boltzman equation (LBE-LES) for chemically reacting
turbulent flows. The Boltzman equation is potentially a better hydrodynamic platform for LES
calculations of turbulent combustion than is the Navier-Stokes equation. The advantages lay both
in improved physical accuracy and better computational characteristics.

Computational advantages.

1. The LBE method solves a simplified version of the Boltzmann equation with a linear advecticii
term and a local collision term. In NS methods, the advection term is non-linear and ,ch
the advection and viscous terms are non-local.

2. In the LBE method, the pressure is obtained via the simple ideal-gas equation of state,
again a local calculation. In the continuum model, the pressure is typically obtained from a
computationally intensive global solution of the Poisson equation.

3. Due to the locality of the numerical scheme, LBE is ideally suited for large-scale, especially,
parallel computing. The scheme incurs very little communication penalty and in some special
cases is known to scale superlinearly with increase in the number of processes. In principal,
the LBE can also be solved with Boolean algorithms resulting in even faster computations
[4].

4. Due to the kinetic nature of the LB method, it is particularly easy to handle complicated
boundary geometries (including phase interfaces, flame fronts) without sacrificing computa-
tional speed. The treatment of complex boundaries in the NS-methods can get very tedious.
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5. Multi-phase flow and flows with phase transitions can be easily handled in the LB method
since all the hydrodynamic and thermodynamic properties are available locally. In the NS
methods, calculating these features can be prohibitively expensive.

6. Multi-component diffusion can present a daunting computational challenge in NS methods.
That can be handled with relative ease in the LB methods.

Physical advantages.

1. LBE is more easily amenable to subgrid-scale modeling than is the Navier-Stokes equation.
This is due to the fact that the advection operator is linear.

2. The molecular-diffusion process which is a major source of modeling error in the PDF method

appears in closed form in the LBE approach. In the PDF-method, a stochastic model is
typically used for modeling this process.

3. With the LB-based methods, one has the choice of using a deterministic or a stochastic
calculation for chemical kinetics. The stochastic method has several advantages over the
deterministic scheme.

4. The LB-based models are better capable of accurately accounting for turbulence-chemistry

interactions.

5. Advection (large-scale stirring) appears in closed form in both the methods.

2 LES of Boltzman equation for turbulent combustion.

Filtered Boltzman equation for turbulent reacting flows. We start with the one-particle
velocity distribution function f(v; x, t). According to the Boltzman equation, the distribution
function of a species 0 evolves as:

-+ W3 = J, C + R. (1)
at ax

The left hand side represents the advection of the distribution function in velocity phase space and
Jg represents the collision operator for species 0. If the flow is reacting, then the collision term can
be split into two parts: one part due to non-reacting (inert) elastic collisions (CO) and the second
part due to reactive collisions (Rn). The distribution function f, is normalized such that the species
continuum density (po) and temperature (T,3) are obtained from the following integrations:

r3 T f=

p,(t) = ]mn(v,t)dv; 3 P3T(t) 1 ]mv 2 ) f(v,t)dv. (2)

In the above m is the particle mass and K is the Boltzman constant.
In the LES of the Navier-Stokes equations, the velocity and the scalar fields are decomposed into

two parts: one part representing the resolved scales of motion and the second from the unresolved
scales. Here, we perform a similar decomposition of the velocity distribution function.

f(v;x .t) = f<(v;x,t) + f>(v;x,t). (3)
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where, as per standard convention, the superscripts < and > represent, repspectively., the resolved
and unresolved parts of the distribution function. We reiterate here that v is a phase-space variable

and is absolutely unaffected by the filtering in physical space. From equation (1), we can write the

evolution equations of the resolved and unresolved distribution functions:

o--+ vj-- c -C-R + v = [C, - C2] + [R, - R<]. (4)

The resolved distribi.P'n function deserves some discussion. Since advection process linear in the
velocity distribution function. the left hand side of the above equation needs no closure modeling.

Whereas, with the Navier-Stokes equation, filtering of the non-linear advection operator leads to
unclosed terms which are the main sources of modeling error. In the filtered Boltzman equation.
the non-linearity appears in a more benign algebraic form in the collision operator. The terms C'
and R< certainly need closure modeling. It is expected that the modeling of these terms would be
less challenging than their NS counterparts. One of the reasons is that the the resolved continuum
variables (which is what we are after) are likely to be insensitive to the models of C< and R< at
the mesoscopic scales. The closure modeling of these terms is the principle objective of the present
research.

A second feature that make the LES of Boltzman equation very attractive for turbulent com-
bustion is that fact that once the resolved distribution function is known, all the relevant resolved
variables can be derived from it with no further approximation. Further, the relationship between
the velocity distribution function and the continuum variables is linear in physical space:

Pa Jmdv; p,3 =Jf'dv; (pa u,3)< Jmvf3 dv; (p,3u0)> Jmrvfiý'dv (5)

In the LES of the Navier-Stokes equations, subgrid-scale models are required for stresses, thermal
flux and scalar flux. Further, models are also required for timescales of unresolved velocity, scalar
and temperature fields. Models for these are typically derived independently based on different
sets of assumptions. Even if each model is independently adequate, there is a real danger of
incompatibility among them models resulting not only in large errors, but also in stifling numerical
stiffness. In the LES of the Boltzman equation, all the models for all processes emerge from a single
and, hence, internallý -consistent methodology.

3 LBE-LES: Model development

Modeling of filtered non-reacting collision operator Non-reacting collisions in inert flows
are typically modeled with the BGK approximation. The Boltzman equation with the BGK ap-
proximation is, in fact, the super-set of the Navier-Stokes equation. For a species 3 we have

C, = -W,(f, -g,); C'= -•,(f' -g <), (6)

where, u3 is the inverse of the relaxation timescale and go is the Boltzman-Maxwell equilibrium
distribution. In the absence of reaction, the only term that is non-linear and, hence, needs closure
modeling is the resolved-scale equilibrium distribution function. The equilibrium distribution is of
the form

g o = exp[-(v - u) 2 /2T,]. (7)
27rTo

One of the main thrusts of the present research is to develop a closure model for g<.
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Modeling of reacting collision operator The reaction operator can be represented in several
different ways depending on the degree of accuracy required. At the most fundamental level we
can consider the reactions at the molecular collision level following the methodology of Kugerl

(Solution of the Boltzman Equation for a reacting gas mixture, Phil. Trans. R. Soc. Lond.
A, 1993. pp 414 - 437). Howvever, for most practical combustion applications the deterministic
reaction-rate approach will be quite adequate. For the Lattice-Boltzman equation method we will

use the standard deterministic law of mass-action, Arrhenius-type reaction model. The modeling
and numerical issues will then be similar to 4-'.se encountered on Navier-Stokes hydrodynamic
platforms and similar strategies can be used. If, however, one were to use the Lattice Gas Automata

scheme, stochastic approaches are possible for computing reactions. This stochastic chemistry
method is definitely superior to the deterministic method both in terms of theoretical validity and
computability. These issues will be addressed in detail in the present research.

Reduced-chemistry models. If the deterministic chemistry approach is used, ways must be

found to obtain reduced representations for the full chemical kinetics. Some of the simpler meth-
ods (quasi-steady state approximation and partial equilibrium approximation) tend to be too in-

accurate and the more sophisticated ones (ILDM. CSP) continue to be too computation intensive.
Two procedures that are adequately accurate and computationally viable are the minimization of
the evolution rate method [5] and a high-order quasi-steady state approximation currently under

development [6].

Conclusion We propose the development of an innovative computational tool for turbulent con-
bustion that is based on the Boltzman equation rather than on the navier-Stokes equation. The
proposed LBE-LES method for turbulent combustion is still very much in its infancy, offering a
tremendous opportunity for ground-breaking advancement.
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